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Josef  ZZhringer d 

ABSTRACT. The samples of l una r  material obtained 
by t h e  Apollo 11 and Apollo 12 space missions are d is -  
cussed, and t h e  s ign i f i cance  of t h e  inves t iga t ions  of 
t hese  samples f o r  t h e  study of l una r  geology and hypo- 
t h e s i s  of l una r  o r i g i n  is evaluated. The activit ies 
of t h e  as t ronauts  on t h e  luna r  su r face  are b r i e f l y  
considered. The luna r  samples are described g iv ing ,  
a t t e n t i o n  t o  minerals a l s o  present on Earth and t o  
minerals no t  previously known. The chemjcal composition 
of l una r  mater ia l s  is discussed and compared with t h e  
composition of terrestrial  and me teo r i t i c  materials. 
Searches f o r  superheavy elements and o ther  new elements 
are reported.  E f fec t s  of meteor i tes ,  cosmic radiation',  
and s o l a r  wind on luna r  material are discussed t ak ing  
i n t o  account r e s u l t s  obtained wi th  some new investiga- 
t ive techniques. The determination of t h e  age of lunar 
materials is considered, and hypotheses of lunar o r i g i n  
are examined i n  the l i g h t  of t h e  new information obtained. 
A71-19 605 

In t roduct ion  

Development of space research has y ie lded  completely new p o s s i b i l i t i e s  - /170* 
f o r  t h e  experimental i n v e s t i g a t i o n  of space. By m e a n s  of rocke t  and satell i te 

* 
Numbers i n  t h e  Eargin i n d i c a t e  pagination i n  the o r i g i n a l  fo re ign  text. 

("Public l e c t u r e ,  given during the general  meeting of t he  Max Planck '  
- .  Society,  - June 10, 1970 i n  - Saarbriicken. 

' (2)Prof. J. .Z&ringer d ied  i n  an accident on Ju ly  22, 19702 
- - -  - -- 

(3) Max-Planck-Institute f6r Nuclear Physi'cs Heidelberg ! 
- -  _ _ -  - - - --- - _ _  .. 
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.probes', processes i n  i n t e r p l a n e t a r y  space are continuously recorded. 

t h e  last t e n  yea r s ,  we have i n  t h i s  way learned a g r e a t  d e a l  about our 

p lane tary  system, and t o  some ex ten t  a l s o  about more d i s t a n t  ob jec ts .  

During 

But t he  objec t  of space research is not only t h a t  of gaining knowledge 

about cur ren t  processes. 

measured by the age o f - o u r  p lane tary  system. 

more about t h e  o r i g i n  of t h e  p l ane t s  aqd of our  Earth i n  p a r t i c u l a r .  

would l i k e  t o  pose the  ambitious questions on t h e  o r i g i n  of our p lane tary  

system. But f o r  t h i s ,  one needs information from earlier times from epochs 

which l i e  mi l l i ons  of years i n  t h e  pas t ,  

That would amount t o  nothing more than a snapshot, 

E s s e n t i a l l y ;  we wish t o  know 

We 

Cer ta in ly  such d a t a  are access ib l e  only with g r e a t  d i f f i c u l t y ;  and when 

they are ava i l ab le ,  they can only b e  fragmentary. Laboratory s t u d i e s  of 

meteorites have shown t h a t  they s t i l l  contain measurable traces of t h e  e a r l y  

h i s t o r y  of t h e  s o l a r  system. 

system is at  least 4.6 b i l l i o n  years  old.  

only extraterrestrial material a v a i l a b l e  t o  us. It i s  conjectured t h a t  they 

o r i g i n a t e  from broken-up a s t e r o i d s  o r  from d i s in t eg ra t ed  comets, although w e  

s t i l l  do no t  knod t h i s  exac t ly .  

t h a t  they cooled very e a r l y  a f t e r  t h e  production of t h e  p lane tary  system. 

t h e  r e l a t i v e l y  s m a l l ,  quickly cooled bodies are p a r t i c u l a r l y  i n t e r e s t i n g  f o r '  

research on t h e  e a r l y  h i s t o r y  of t h e  s o l a r  system. 

From t h i s ,  we have learned t h a t  our p lane tary  

So f a r ,  metero i tes  have been t h e  

We have, however, many well-founded ind ica t ions  

Thus, 

We hope t o  obta in  q u i t e  

similar information from lunar research. The satell i te of our Earth,  and the 

many o t h e r  moons of t h e  o u t e r  p l ane t s ,  are l ikewise  small bodies which are 

presumed t o  have s o l i d i f i e d  quickly. Thus, w e  can hope t h a t  p r imi t ive  plane- 

t a r y  material is s t i l l  t o  be  found on their sur faces .  This is the reason f o r  

s c i e n t i s t s ?  g rea t  i n t e r e s t  i n  l u n a r  research. They consider t h e  adventurous 

t r i p  t o  our  sa te l l i te  as a kind of  "archeological expedition". 

/171 

, I n  t h e  l as t  year ,  American a s t ronau t s  have t w i c e  landed on the Moon. They 
have co l l ec t ed  Mdon samples and re turned  them t o  t h e  Earth. 

samples have been s tud ied  thqroughly. 

Since then, t hese  

A t  the beginning of January, 1970, about 
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1,000 s c i e n t i s t s  repor ted  t h e i r  r e s u l t s  at  a meeting i n  Houston. The repor t s  

w e r e  p r i n t e d  i n  Science, Volume 167, of 30 January, 1970. 
II I 1  

The d e s i r e  t o  visit our neighboring heavenly body is probably as o l d  as 

The Moon is s o  nea r  the Earth,  and i t  changes its phases so mankind i t s e l f .  

rap id ly ,  t h a t  people have always given i t  as much a t t e n t i o n  as t h e  Sun.  

is expressed i n  many names, customs 

This 

and r e l i g i o u s  observances. 

Ec l ipses  of t h e  Moon are some of t h e  o l d e s t  astronomical phenomena 

recorded i n  h i s t o r y .  

co r rec t ly ,  a f t e r  Thales of Miletus had found t h e  cause f o r  t h e  phases of t h e  

Moon: Ptolemy had g rea t  d i f f i c u l t y  w i t h  t h e  o r b i t  of t h e  Moon, although i t  

should have f i t  q u i t e  w e l l  i n t o  h i s  geocent r ic  system. But h e  had t o  assume a 

complicated mechanism t o  expla in  t h e  most s t r i k i n g  i r r e g u l a r i t i e s  of  t h e  l u n a r  

o r b i t .  

Anaxagoras (ca. 500 BC) w a s  t h e  f i r s t  t o  exp la in  them 

Gal i leo  w a s  t h e  f i r s t  s cho la r  t o  study t h e  su r face  s t r u c t u r e  of t h e  Moon. 

Gal i leo  discovered t h e  te lescope  i n  1609 , simultaneously wi th  Kepler's ex- 

p lana t ion  of p lane tary  motion. With t h e  te lescope  h e  made a series of sensa- 

t i o n a l  astronomical observations.  H e  repor ted  on h i s  f i r s t  observation of the 

Moon: "I saw the Moon as c lose  as i f  i t  w e r e  only twice t h e  diameter of t h e  

Earth away. The s i d e  turned toward us i s  i n  p a r t s  much b r i g h t e r ,  and i n  p a r t s  

much darker. 

assumed by many philosophers. It is rough, w i t h  hollows and bulges,  nothing 

o t h e r  than the Earth d is t inguished  by mountains and va l leys .  This has  never 

been seen by anyone be fo re  me." 

The s u r f a c e  is  n e i t h e r  smooth no r  uniform, no r  sphe r i ca l ,  as is 

(Sider ius  Nuncius , see Figure 1). 

Galilee's observations were soon improved, and the Danzig astronomer 

. Hevelius produced one of t h e  f i r s t  r e l i a b l e  l u n a r  maps (Figure 2,  l e f t ) .  H e  

s t i l l  used designations from the  Ea r th*s  geography. 

nomenclature, because h e  recognized no r e l a t i o n s  t o  Ear th ly  shapes. 

t h e  seas romantic names (Serenity,  Dreams, Fecundity, C a l m ,  Storms, etc.) whi le  

he provided the mountains w i t h ?  the names of g r e a t  men (Figure 2, r i g h t )  e 

understood the van i ty  of humans; h i s  designation has  p e r s i s t e d  t o  today. 

P a t e r  R i c c i o l i  changed t h i s  

He  gave /172 

H e  

3 



Figure 1. A ske tch  of Ggl i leo ' s  observations of 1609, 
which he made wi th  the te lescope  which h e  had j u s t  
discovered. 

From the i r r e g u l a r  shadowing, h e  ca l cu la t ed  t h e  he igh t  
of t h e  luna r  mountains as about 10 km. H e  had a l s o  
observed ringed mountains and p la ins .  

Apollo Missions 

The landing sites of Apollo X I  and XI1 are f l a t ,  mare regions (Figure 2) .  

They are covered w i t h  a dus t  l aye r ,  i n  which small rock fragments are sca t t e red .  

The dus t  l a y e r  is  in t e r spe r sed  w i t h  many craters of up t o  100 m diameter, 

usua l ly  f l a t  and f i l l e d  upe Larger xock fragments, and some g las s  fragments 

appear on the f l o o r s  of some deeper cratexs. Presumably these  are p r imi t ive  /174 
rock. On t h e  crater w a l l s , ,  thpq th ickness  of the dust l a y e r  can b e  estimated 
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Figure 2. The l e f t  Moon map is derived from t h e  Danzig astronomer 
who borrowed designations from geography on Earth. The r i g h t  map 
t h e  rev ised  names by P a t e r  R icc io l i .  This nomenclature has pers  
t h e  present.  

Hevelius , 
contains 
s t e d  t o  

as 4-6 m. 

IrregiLaE rock fragments are imbedded i n  t h e  crater w a l l s ,  just as on t h e  

s u r f  ace. 

Figure 3 shows such a crater landscape i n  the Sea of Storms. 

The as t ronauts  had m a n y  missions during t h e i r  Moon visit. F i r s t ,  they 

quickly f i l l e d  a p l a s t i c  bag wi th  dus t  and s tones  from near  t h e  landing s i te ,  

so that they could b r i n g  back at least some Moon samples i n  case of an unplanned 

e a r l y  departure. 

mometer, w i t h  which something can b e  learned  about the i n t e r n a l  s t r u c t u r e  o f  t h e  

Then t h e  as t ronautes  set: up experiments, including a seis- 

t 
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Figure 3. A crater landscape near  the landing s i te  of 
Rock fragments appear on t h e  f l o o r  of 
Presumably they are pr imi t ive  rocks. 

Apollo X I I .  
t h e  crater. 
me diameter of t h e  l a r g e  crater is about 100 m. 

Moon. 

XI. 
t he  Moon s t a r t e d  luna r  v ibra t ions  which pe r s i s t ed  f o r  hours. 

is not  y e t  e n t i r e l y  explained. 

10 km th ick ,  had broken up4 The waves then suf fered  t h i s  t i m e  delay due t o  

mul t ip le  r e f l e c t i o n s  by the rock fragments. Ditches were dug, so as t o  become 

Figure 4 shows t h e  experiments set up.near  t h e  landing s i te  of Apollo 

The lunar vehic le  and the t h i r d  s t a g e  of t h e  Saturn rocket which s t ruck  

This phenomenon 

It appears as i f  t h e  upper lunar  c r u s t ,  about 

/176 

* acquainted w i t h  t h e  na ture  of t h e  ground. D r i l l  cores  up t o  40 cm long w e r e  

a l so  brought back, iq o rde r  t o  de t ec t  d i f f e r e n t  deposi ts  through poss ib le  

inhomogeneitiee. This showed t h a t  t h e  ground below 10 cm depth was very hard. 





!.I 

Arrival of t h e  Lunar Samples 

From the Apollo X I  mission, t h e  a s t ronau t s  (Armstrong, Aldrin, and 

Collins) brought back 11 kg of dus t  and 11 kg of rocks t o  t h e  Earth. 

Apollo XI1 t h e  y i e l d  w a s  3 kg dust and 45 rocks weighing 31 kg. With respec t  

t o  study of t h e  l u n a r  samples, the National Academy of Sciences had concluded 

i n  1964 t o  test them f o r  pathogenic c h a r a c t e r i s t i c s  f o r  s i x  weeks i n  quarantine. 

For t h i s  purpose, a luna r  labora tory  wi th  t h e  necessary t echn ica l  equipment 

w a s  e rec ted  a t  the  Manned Space F l i g h t  Center i n  Houston. 

time, t i m e - c r i t i c a l  experiments such as measurement of  short-l ived r a d i o a c t i v i t y ,  

and temporary s t u d i e s ,  were t o  b e  performed there .  

With 

During the  q u a r k t i n e  

For t h e  various d e t a i l e d  measurements, 140 P r i n c i p a l  Inves t iga to r s  (P. I.) 

were sought out. 

had f o r  t h e  most p a r t  previously worked wi th  meteor i tes  and were accustomed 

t o  working with small amounts of material. The questions f o r  the  l u n a r  samples 

were similar t o  those  f o r  meteorites.  

already developed and ava i lab le .  

Many of these were no t  Americans. The s c i e n t i s t s  s e l e c t e d  

Thus, the experimental equipment w a s  

On t h e  b a s i s  qf an i n v i t a t i o n  from 0. A. Schaeffer (S ta t e  University of 

New York, Stony Brook), the author had the opportimity t o  cooperate i n  t h e  

p rov i s iona l  analyses i n  Houston and t o  experience this unique h i s t o r i c a l  event. 

The a r r i v a l  of t h e  Apollo X I  samples w a s  q u i t e  exc i t i ng .  

among the s c i e n t i s t s  -Who dared chance the f i r s t  h i s t o r i c  look? 

sample holders  w e r e  f i n a l l y  opened and the rocks appeared, t o  b e  s u r e ,  one saw /177 
only disappointed looks. 

covered w i t h  a l a y e r  of  very f i n e  dus t  land showed no mineralogical d e t a i l s .  

There were problems 

When t h e  

The rocks looked l i k e  a p i l e  of coke. They w e r e  

, 

The provis iona l  analyses had t o  b e  p e r f o r m m h i g h  vacuum chamber o r  

i n  closed glove boxes u n t i l  i t  could s a f e l y  be  concluded t h a t  t h i s  material 

contained no  dangerous "Moon bacteria".  

su re ,  because about 30 tons qf~extraterrestrial  material fall .  on the Earth 

(This danger w a s  only s l i g h t ,  t o  b e  
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every day, inc luding  some meteor i tes ,  without any g r e a t  b io log ica l  ca tas t rophe  

having y e t  occurred.) 
! 

Occasionally a glove broke, o r  a l i n e  t o  t h e  sample chamber, and t h e  

s c i e n t i s t s  i n  t h e  d i r e c t  neighborhood were "endangered" - inc luding  t h e  

author - and had t o  j o i n  t h e  as t ronauts  i n  t h e  quarantine s t a t i o n .  Direct 

concact wi th  t h e  as t ronauts  w a s  very advantageous f o r  i d e n t i f i c a t i o n  of t h e  

rock samples, because they could answer many questions f r e s h  from memory. 

I n  discussions with t h e  as t ronauts ,  one could see t h e i r  broad t r a i n i n g  and 

s p e c i a l  a b i l i t i e s .  Usually they behaved l i k e  test p i l o t s  who had mastered 

many dangerous s i t u a t i o n s  through quick ac t ion .  

a work week l i k e  any other". 

operation would put t h e  con t ro l  cen ter  o u t  of order. I n  p a r t i c u l a r ,  they are 

q u i t e  normal, very p l easan t ,  and extremely humorous men. 

declined an i n v i t a t i o n  t o  p lay  poker: 

I can ' t  a f f o r d  poker.'' 

"The f l i g h t  t o  t h e  Moon was  

These men could a l s o  obey orders.  An a r b i t r a r y  

Charles Conrad 

"I've already l i ved  dangerously enough; 

Af te r  conclusion of t h e  preliminary s t u d i  &samples were d i s t r i b u t e d  

t o  t h e  various i n s t i t u t e s  e 

Four p r i n c i p a l  i n v e s t i g a t o r s  and t h e i r  co-workers from two M a x  Planck 

I n s t i t u t e s  p a r t i c i p a t e d  i n  this program: Professors H. Hintenberger and H. 

Whke (Max Planck I n s t i t u t e  f o r  Chemistry l o t t o  Hahn I n s t i t u t e ] ,  Mainz), and 

Professor  P. Ramdohr and the author ( M a x  Planck I n s t i t u t e  f o r  Nuclear Physics, 

Heidelberg). 

active a t  Mainz, and Professor  W. V. Engelhardt (University of Tiiiingen) were 

o t h e r  German p a r t i c i p a n t s  e 0 

Professor  W. H e r r  (University of Cologne) , who w a s  previously 

The heavy pa r t i c ipa t5on  of ou r  s o c i e t y  is  r e l a t e d  t o  t h e  f a c t  t h a t  i t  has 

a long t r a d i t i o n  f o r  f r o n t i e r  areas of cosmochemistry, and our  s o c i e t y  is 

assoc ia ted  w i t h  s c i e n t i s t s .  F. Paneth and W. Gentner have pressed forward 

with meteor i te  s t u d i e s ,  and have a l s o  developed r ad ioac t ive 'da t ing  methods. 

Otto Hahn and J. Mattauch w e r e  the f i r s t  t o  f i n d  radiogenic 87Sr, which became 

the b a s i s  f o r  t h e  important Rb/Sr age determination method. 
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Figure 5. Moon dust under t h e  micro- 

3' 

scope. The black g ra ins  are 
i lmeni te ,  FeTiO Pyroxene is 

dark brown. The l i g h t  grains  are 
fe ldspar  o r  g l a s s  fragments. Foamy 
g las s  can be seen at '  t h e  up.per 
l e f t .  The sphe r i ca l  p a r t i c l e s  of 
d i f f e r e n t  colors  are g la s s  

Figure 6 .  
p a r t i c l e  which has ro t a t ed  i n  
f l i g h t .  

A dumb-bell shaped g l a s s  

Description of t h e  Lunar Samples 

The luna r  dust is very fine-grained, and looks l i k e  graphi te  powder. 

It contains g l a s s  as w e l l  as minerals.  The major minerals are pyroxene, 

plagioclase,  and i lmeni te  (Figure 5). The components are i n  p a r t  very s t rongly  

intergrown, and t h e  glass is of ten  foamy. 

e f f e c t s ,  i nd ica t ing  a complex h i s to ry .  Along with g l a s s  fragments, t h e r e  a r e ,  

p r e t t y  g l a s s  sphe r i ca l  p a r t i c l e s  derived from meteori te  impacts e On impact 

of bodies with v e l o c i t i e s  of many lctn/sec, t h e  rock is vaporized, and - a t  a 

In  p a r t ,  they show shock wave 

more d i s t a n t  zone - melted. , f i e  l i t t l e  g la s s  spheres are e i t h e r  condensed 

10 
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from t h e  s i l i ca  vapor, o r  they are spray from the  melted rock. 

p a r t i c l e s  which have ro t a t ed  before  s o l i d i f i c a t i o n  i n  f l i g h t  have dynamic 

shapes. E l l i p so ida l  shapes , dumb-bells , and even tear-drop shapes were found. 

The la t te r  r e s u l t  from t h e  pul l ing  apar t  of rapidly r o t a t i n g  dumb-bells. 

Typical g l a s s  p a r t i c l e s  can be seen i n  Figure 6. They are very r e h i s c e n t  

of t h e  shapes of t e k t i t e s  produced by impacts on t h e  Earth (see W. Gentner, 

Many g la s s  

1964 Yearbook [l]). The chemical compositions of t h e  ind iv idua l  g lass  p a r t i c l e s  

vary s t rongly  because they arise from d i f f e r e n t  phases of condensation o r  from 

d i f f e r e n t  rock types. 

chemical composition, as w e l l  as  t h e i r  mineral  makeup, from t h e  c r y s t a l l i n e  

rocks. 

The c r y s t a l l i n e  components of t he  dust der ive t h e i r  

The c r y s t a l l i n e  rocks are basa l t - l i ke  magmatic rocks. Their major minerals 

are l ikewise pyroxene, p lag ioc lase ,  i lmeni te ,  and o l iv ine .  They are a l l  f i n e l y  

c r y s t a l l i n e  and f u l l  of bubbles, w i t h  a densi ty  of 3 . 4  (mean densi ty  of t h e  

Moon 3 . 3 4 ! ) .  The bubbles are round, r a re ly  oval ,  and have a diameter  of 1-3 

mm. 

make up as much as 15% of t h e  volume. 

are up t o  0.5 mm i n  s i ze .  Otherwise, t h e  gra in  s izes  are between 0.01 and 

0.2 mm. Other c r y s t a l l i n e  rocks are coarse-grained (0.2 t o  3 mm) and have a 

densi ty  of 3.2. I r r e g u l a r  voids occur in s t ead  of bubbles. The voids extend 

The bubble w a l l  is  l i n e d  with s t rong ly  r e f l e c t i n g  c rys t a l s .  The voids 

The l a r g e s t  c r y s t a l s  are of o l iv ine ,  and 

i n t o  t h e  c r y s t a l s  (Figure 7) .  

The agglomerates are e a s i l y  f r ang ib le  rocks made up of Moon dust  and 

various c r y s t a l l i n e  fragments baked together ;  The ind iv idua l  components are 
of ten  permeated wi th  porous glass .  

smaller  than 5 mm, and more abundant t han . the  t o t a l  of the  magmatic rocks. 

Fragments from o the r  deposi ts  are of ten  mixed i n  (Figure 8). 

Most of t h e  c r y s t a l l i n e  fragments are 

These descr ip t ions  apply f o r  both landing sites, Apollo X I  and XII, 
although the re  are noteworthy mineralogical differences.  The rocks from 

Apollo X I 1  (Sea of Storms) show a more var ied  mineral  composition than those 

from .Apollo XI.  

pyroxene, p lag ioc lase  and o l iv ine ,  

Many rocks fxom Apollo XI1 have a d i s t i n c t l y  high content of 

Olivine w a s  very rare i n  the Apollo X I  



Figure 7. A c r y s t a l l i n e  Moon rock. 
Mineral composition : f e ldspa r ,  

Figure 8. A sawed-up Moon agglo- 
merate of b r i g h t  crys tal l iqe 
s tone  fragments and Moo= dus t  
baked together.  

pyroxene ani i h e n i t e .  
are basa l t - l i ke ,  very f i n e l y  
c r y s t a l l i n e ,  and have bubbles o r  
voids. 

nes'e i o c k s , .  , 

samples. The two discovery sites even d i f f e r  i d e c r y s t a l  s izes .  Several  

Apollo X I 1  rocks have c r y s t a l s  as l a r g e  as 35 mm. 

sampling w a s  b e t t e r  d i r ec t ed  because of t h e  longer c o l l e c t i n g  t i m e ,  o r  t h e  

rocks i n  t h e  Sea of Storms are more s t rong ly  d i f f e r e n t i a t e d  - that is, they 

Either t h e  Apollo XI1 

have cooled more slowly from a l a r g e r  sea of magma. 

t h a t  t h e  Apollo X I 1  rocks contained only 3 agglomerates, whi le  h a l f  .of them 

were agglomerates f o r  Apollo X I ,  

It is  a l s o  noteworthy 

I 

With Apollo X I ,  a t o t a l  of 12 minerals were found. They were: 
Q 

Pyroxene 

P lag ioc la se  r '  (ea, N a )  A12Si20s 

12 



I lmeni te  

Ulvospinel 
3 FeTiO 

Fe2Ti0 4 
Pyroxy f e r r o i  te 

Armacollite ~ (Mg, Fe) Ti205 (new) 
(Mg, Fe, Ca) S i 0 3  (new) 

C a T i O  ( w i t h  10% rare earths) 3 
Dys analy te  

Tridymite 

C r i s  tob a l i  te - 2 Si0  

R u t i l e  T i 0 2  

Baddeleyite Z r 0 2  

"S i l i ca t e"  Z r ,  T i ,  Fe - s i l i ca t e  (new) 

Three of t hese  minerals had n o t  previously been known on t h e  Earth. Two 
of them were a l s o  found by P. Ramdohr and A. E l  Goresy 121 a t  t h e  M a x  Planck 

I n s t i t u t e  i n  Heidelberg. The (Mg, Fe)Ti 0 w a s  named armacol l i te  a f t e r  the 2 5  
Apollo X I  as t ronauts  (Armstrong, Aldrin,  Col l ins )  (Figure 9) .  Me teo r i t i c  

minerals are a l s o  present ,  b u t  they make up less than 1% by weight. 

The Chemical Composition 

The major components at three d i f f e r e n t  sites on t h e  luna r  s u r f a c e  

w e r e  known even be fo re  t h e  Apollo landings. 

flew alpha ray  backsca t te r ing  experiments on the soft-landed surveyor V, V I ,  

Turkevich and co-workers 133 

and V I 1  probes. 

i r r a d i a t e s  the lunar sur face ,  and the energy of t h e  r e f l e c t e d  alpha p a r t i c l e s  

is propor t iona l  t o  t h e  m a s s  of t h e  t a r g e t  nuc le i .  

ments, t h e  major chemical components can b e  determined from the  energy 

spectrum of the back-scattered a lpha  p a r t i c l e s .  

decided t o  b e  co r rec t  only a f t e r  they could .be d i r e c t l y  compared wi th  

labora tory  r e s u l t s ,  and i t  w a s  found that they showed d i s t i n c t  agreement. 

The r e s u l t s  were telemetered t o  Earth. An alpha emitter 

With c a l i b r a t i o n  measure- 

To b e  sure ,  the results were , 

Table 1 contains the Surveyor ana lyses  and t h e  r e s u l t s  of t h e ' d u s t  

samples from Apollo XI and XfI. The r e s u l t s  from t h e  mare samples d i f f e r  



Figure 9. A highly polished sec t ion  under the microscope. 
. The b r igh t  lamellae are i lmeni te ;  pyroxene i s  l ight  gray; 

fe ldspar  is dark gray. The l a r g e  dark gray mineral  g ra ins  
(0.15 mm long) are armacol l i te ,  one of the minerals newly 
discovered i n  t h e  Moon rocks 121 

only s l i g h t l y .  The Sea of Storms has  only 3.5% Ti02  and thus somewhat more 

at Tycho yielded only ha l f  as much i r o n  and considerably less t i t a n i u m ,  and 

so more aluminum and calcium 141. 

' MgO. All the o ther  components are the same. The ana lys i s  i n  t h e  highland 

, 

The chemical composition i n d i c a t e s  that w e  are deal ing w i t h  a bas i c ,  

i.e., s i l ica-poor ,  magmatic rock which outwardly resembles Earth b a s a l t ,  

bu t  is  very d i f f e r e n t  i n  its chemical composition. 

The complete labora tory  analyses of t h e  Apollo X I  samples n a t u r a l l y  

provide a much more extensive view i n t o  t h e  chemistry of the lunar  surface.  

The analyses of various c r y s t a l l i n e  rock samples showed no, grea t  differences.  
' 

I 

14 
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TABLE 1. THE MAJOR COMPONENTS OF THE PREVIOUS SURVEYOR AND APOLLO 
LANDING SITES. THE CHEMICAL COMPOSITION OF THE SEAS I S  RATHER 

, SIMILAR, WHILE THE MOUNTAINS SHOW HIGHER ALUMINUM AND CALCIUM 
CONTENT (FELDSPAR) AND LESS TITANIUM AND IRON. 

I Seas Highland 

Surveyor 
V 

46 
14 
15 
12 . 
7d5 
4*4 
0.6 

__ 
1 

Apollo Apollo 
X I  I X l I  

12 
16 17 

12 
3b1 

Ob4 

7.0 
7*6 
0 3  ' 

' 0.14 0 18 - _-. . d-' 

t 

1 -  

I 

46 
22 

. 18 

N. 0 
55 
7.0 

' 47 

- 
Only K, Rb, GS, Ba,  Th and U 'are less abundant i n  t h e  coarsely c r y s t a l l i n e  

rocks than i n  t h e  f i n e l y  c r y s t a l l i n e  ones, by a f a c t o r  of about 2. 

I n  a l l  the samples, t h e  e a s i l y  v o l a t i l i z e d  elements such as t h e  a l k a l i s ,  

B i ,  Hg, Zn, Gd, Pb, Te,  G e  and Br and C 1 ,  as w e l l  as t h e  s i d e r o p h i l e  elements 

N i ,  Pd, and Au wi th  d i s t i n c t  metall ic character,are s t rongly  depleted. 

H 0 and carbon concentrations are a l s o  very low, amounting t o  only 10 t o  100 

ppm (ppm = 1 p a r t  i n  10 ) *  

The 

6 2 

"Fireproof" elements which form r e s i s t a n t  oxides,  such as T i ,  Z r ,  Sc, 

S r ,  Hf, Y, and the rare e a r t h s  are unusually abundant. In Figure 10 the  

p r i n c i p a l  elements, and i n  Figure 11 some t y p i c a l  trace elements are p l o t t e d  

and compared wi th  averages from t h e  Earth's crust, w i t h  ordinary chondrites,  

and with tektites. Enrichments o r  deple t ions  up t o  a f a c t o r  of 100 are 
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Figure 10. The abundances of the principal elements of the 
Moon dust are compared with the average for the Earth's 
crust,  with chondrites, and with tekt i tes .  

.. . 

104 

103 

P 

10-1 Li 1 

Figure 11. ,The same comparison as i n  Figure 10, for some' 
typical trace elements e Note the .logarithmic sca le  i n  

I1 z B Earth's crust 
0 Moon -dust. 
Ometeorites (chondrites) 
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c l e a r l y  v i s i b l e .  From t h i s  i t  is  r a t h e r  c e r t a i n  t h a t  chondrites and t e k t i t e s  

cannot arise from t h e  l u n a r  sur face .  
, 

Within the meteor i te  groups, a similar tendency toward enrichment of t he  
. -  

. - poorly v o l a t i l e  elements can be de tec ted  i n  . the t r a n s i t i o n  from Carbons- 

ceous chondrites t o  t h e  achondrites,  which most nea r ly  approach the  e u c r i t e s  

of t h e  Moon samples. 

processes have taken p lace  i n  t h e  meteorites.  

which w e  have previously r e l i e d  on cannot be applied i n  every case. 

absence of water p lays  a major p a r t  i n  t h i s .  

- 

Thus, one can conjecture t h a t  similar f r a c t i o n a t i o n  

The l a w  of "geochemistry" 

The 

The chemical composition is not  y e t  understood. Beyond t h a t ,  i t  must 

d i f f e r  from that of the l u n a r  i n t e r i o r .  

of the rocks, which are between 3.2 and 3 . 4 ,  d eperid& on the bubble content,  

This appears merely from t h e  d e n s i t i e s  

while the mean dens i ty  of the Moon is  only 3 . 3 4 .  Since t h e  p re s su re  of about 

50 kb i n  the i n t e r i o r  of t h e  Moon causes a dens i ty  increase  of about 20%, t h e  

material i n  t h e  i n t e r i o r  of t h e  Moon m u s t  cons i s t  of correspondingly less 

dense material than t h e  Moon rock brought back so f a r .  

rare phenomenon,that on the lunar sur face ,  heavy rocks rest on a r e l a t i v e l y  

Here w e  have t h e  

l i g h t  foundation. For a body which had been melted throughout, l i k e  the 

Earth,  t h e  heavy material occurs i n  t h e  core, just the opposite from the /185 

Earth. 
9 

Such mass enrichments - so-called mascons - had been found even 

earlier i n  t h e  luna r  su r face .  

i n  t h e i r  o r b i t a l  motion, e s p e c i a l l y  when passing over t h e  c i r c u l a r  maria. 

Thus, i t  i s  conjectured t h a t  impacts are respons ib le  f o r  t hese  anomalies. 

Was t h e  dens i ty  of the impacting body higher? 

p r o j e c t i l e  (as te ro ids  o r  comets) cause t h e  chemical. f r ac t iona t ion?  We can 

S a t e l l i t e s  around t h e  Moon show i r r e g u l a r i t i e s  

Did t h e  impact energy of t h e  

s t i l l  g ive  no answer t o  a l l  these  questions.  

W e  must mention, another s p e c i a l  anomaly i n  t h e  abundances wi th in  t h e  

rare ea r ths .  

rare earths, i n  comparison w i t h  chondrites,  by a f a c t o r  of about 4 (Figure 12). 

I n  all the Apo&lo X I  samples, europium is rarer than t h e  o the r  



Figure 12 .  Abundance of  t h e  rare e a s t h s  relative t o  chondrites. 
Like the poorly v o l a t i l e  elements ( T i ,  Y ,  Z r ,  e t c . ) ,  they are 
h igh ly  enriched. 
d i c a t e s  t h a t  t h e r e  has been f r a c t i o n a l  c r y s t a l l i z a t i o n  a t  
an extremely low degree of ox ida t ion  [ll] . 

The r e l a t i v e l y  small europium content in- 

* 

Under s t rong ly  reducing conditions,  europium can a l s o  form b iva len t  compounds 

and be  taken up by p lag ioc lase ,  while all t h e  o t h e r  rare e a r t h s  are only 

t r i -va l en t  i n  pyroxene. 

is estimated as less than a t m  IS]. 
The oxygen p a r t i a l  p ressure  f o r  t h i s  magmatic system 

Residues of me teo r i t i c  material are found i n  lunar dus t  and agglomerates. /186 

N i ,  Cd, Zn, Ag, Au, Lu, and T a  are more abundant than i n  c r y s t a l l i n e  rocks [6].  

Addition of 2% o r  lo-' grams of meteoric material p e r  yea r  i n  t h e  form of 

carbonaceous chondrites can expla in  t h i s  d i f fe rence .  This bombardment rate 

agrees w e l l  with t h a t  estimated f o r  t h e  Earth. 

incidence of about 30 tons of 

1 

t o  a d a i l y  

Along wi th  l e s s ' T i ,  t h e  Apollo XI1 samples a l s o  contained less Zr, K and . .  
Rb, and more Fe, Mg, and N i  than t h e  Apollo X I  samples. 

18 

The c r y s t a l l i n e  rocks 
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P 

b 

show somewhat g r e a t e r  v a r i a t i o n s  i n  Mg, N i ,  and C r  content,  bu t  - i n  s p i t e  

of t h e i r  g r e a t e r  v a r i a b i l i t y  i n  mineral content - they appear t o  b e  derived 

from a very s i m i l a r  magma. 

Pb, Z r ,  Y ,  Yb, U, Th and Nb than had been encountered previously [7]. 

Only one rock had a g rea t  dea l  more S i ,  K,  Rb, 

New elements such as t h e  transuranium elements and super-heavy nuc le i  * 

were, a l s o  sought i n  t h e  l u n a r  material. 

cosmic ray n u c l e i  can be imbedded i n  t h e  o u t e r  layers .  

extremely s m a l l  concentrations of less than 

could be reported.  

Since t h e  Moon has no atmosphere, 
24 7 For 244Pu and Cm, 

g p e r  gram of Moon material 

Such measuring s e n s i t i v i t y  had no t  previously been 

a t t a ined .  

I 

The n a t u r a l  i so tope  abundances of many elements such as C, N. 0, S i ,  S , 

and o the r s  show no g r e a t e r  devia t ions  than are common i n  Earth samples. The 

l i g h t e r  i so topes  a r e x s u a l l y  less abundant, which could b e  a r e s u l t  of s t i l l  . 
unknown f r a c t i o n a t i o n  processes e 

* 
Hydrogen ex t r ac t ed  from t h e  luna r  dus t  i n  an exception. Its abundance 

is smaller than i n  terrestrial hydrogen by a f a c t o r  of  a t  least 8 [8]. Since 

it is  of s o l a r  o r i g i n ,  as i s  shown below, w e  can e s t a b l i s h  a va luable  con- 

c lus ion  on t h e  deuterium content of t h e  s o l a r  corona. 

Physics of t h e  Lunar Surface 

Since t h e  Moon has no atmosphere, a l l  types of r ad ia t ions ,  e l ec t ro -  

magnetic waves, low energy s o l a r  wind p a r t i c l e s ,  s o l a r  and g a l a c t i c  components 

of cosmic r ad ia t ion ,  and even i n t e r p l a n e t a r y  dus t  and meteorites can arrive 
unhindered a t  the  luna r  sur face .  

1 

We can u t i l i z e  the processes taking p lace  i n  t h i s  way t o  l e a r n  somewhat /187 

more about the rad ia t ion  i t s e l f  o r  about t h e  temporal changes of t h e  lunar 

* 
Trans l a to r ' s  Note: The ?context impl ies  t h i s  should be deuterium, 

19 
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Figure 13. The su r face  of a Moon agglomerate. Many 
small impact craters from micrometeorites can b e  
detected.  Most of the craters are v i t r i f i e d .  

sur face ,  and i n  p a r t i c u l a r ,  about t h e  magnitude of t h e  turnover rates f o r  

t h e  ind iv idua l  layers .  From t h e  n a t u r a l  r ad ioac t ive  materials and t h e i r  

daughter substances,  w e  can da te  t h e  rock-forming process and l e a r n  something 

about t h e  h i s t o r y  of the formation of t h e  Moon. 

Meteorite Bombardment 

When studying t h e  l u n a r  rocks, it is s t r i k i n g  t h a t  most of them are 

round on one s i d e .  

l u n a r  surface.  It seems t h a t  t h e r e  is a process which causes erosion. On 

looking more c lose ly ,  small impact craters can be seen on t h e  surfaces.  

Figure 13 shows such a surzace which is enough l i k e  a l una r  landscape t o  b e  

confused f o r  i t .  Even under t h e  microscope and t h e  h ighes t  electron-micro- 

scopic  enlargements,.such microcra te rs  may b e  de tec ted  with diameters down t o  

0.1 v m  (Figure 14) e 

This can be seen c l e a r l y  even i n  photographs made on t h e  

._ - 
# 

I 

- - .  
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Figure 14. A microcra te r  g r e a t l y  enlarged w i t h  the 
The inipact s i t e  is  scanning e l e c t r o n  microscope. 

i n  t h e  center ,  from which the material w a s  vaporized 
away. The material i s  f r ac tu red  r a d i a l l y  due t o  t h e  
mechanical stress. (Photo: Max Planck I n s t i t u t e  
f o r  Nuclear Physics , Heidelberg). 

/188 The following crater d e n s i t i e s  were found on the luna r  rocks 193: - 
2 6 craters per  c m  w i th  a diameter L 1 mm 
0 

100 craters p e r  cmL wi th  a diameter L 0.15 mm 
5 2-10 craters p e r  an2 w i t h  a diameter 2 0.002 mm 

The crater dens i ty  decreases expohent ia l ly  with p a r t i c l e  s i z e .  The s m a l l  

craters, t o  be sure ,  are much too rare i n  comparison'with t h e  expected 

p lane tary  dus t  flux. 

turnover, o r  e rased  by erosion. The e ros ion  process is assumed to comprise 

new micrometeorite impacts, as' w e l l  as wear from "dust storms" from adjacent 

impacts of l a r g e r  bodies, 'After a per iod  of lo4 - a, s o r t  of equilibrium 

They are apparently covered wi th  dus t  by t h e  continuing 

- -  
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appears, because all t h e  rocks s tud ied  so f a r  I and X I I )  have t h e  

same dens i ty  d i s t r i b u t i o n  f o r  microcraters less than 1 mm. 

Larger craters have a longer l i f e t i m e ,  and craters beyond 1 m i n  diameter /189 

have remained s i n c e  the  o r i g i n  of t h e  dus t  l a y e r  i n  t h e  Sea of Tranqui l i ty .  

Their abundance co r rec t ly  shows t h e  incidence rate f o r  l a r g e r  bodies.  From 

t h i s ,  toge ther  wi th  s a t e l l i t e  measurements, we can ex t r apo la t e  t h e  t r u e  
2 incidence rate f o r  smaller p a r t i c l e s .  

area (or one as t ronaut )  on t h e  l u n a r  sur face ,  then on t h e  average i t  would b e  

30,000 years before  it w a s  s t ruck  by a p a r t i c l e  of 1 mm diameter. 

son, t h i s  area would be s t r u c k  by a 0.1 mm p a r t i c l e  eve& 30 years ,  o r  by a 

0.001 mm p a r t i c l e  every 20 minutes. 

I f  one were t o  place. a shee t  of 1 m 

I n  compari- 

The ob jec t  of crater s t u d i e s  i n  t h e  Moon rocks i s  t o  f i n d  out whether 

material from t h e  impacting p r o j e c t i l e s  is t o  b e  found i n  t h e  v i c i n i t y  of t h e  

craters, and whether a conclusion can be  reached about t h e  chemical composition 

of i n t e rp l ane ta ry  material. 

attempt t o  determine t h e  ve loc i ty  of t h e  impacting p a r t i c l e .  For t h i s  purpose, 

simulation experiments were performed i n  the labora tory .  

e l e c t r i c a l l y  charged and acce le ra t ed  w i t h  a high-voltage genera tor  t o  40 
km/sec. 

t h i s  way. 

From t h e e r a t i o  of diameter t o  depth, w e  can 

Dust p a r t i c l e s  w e r e  

Figure 15 shows an' a r t i f i c i a l  impact crater i n  Moon rock produced i n  

Cosmic Radiation 

The highly ene rge t i c  p a r t i c l e s  of cosmic r a d i a t i o n  cause nuc lea r  r eac t ions  

on t h e  l u n a r  su r face ,  j u s t  as i n  meteor i tes  (see the cont r ibu t ion  from H. 

Wake, Yearbook, 1966), 
on the type of p a r t i c l e .  

amounts t o  about 1 m. 

o f  some 100 MeV it is  only a few centimeters.  

The depth of pene t r a t ion  depends on t h e  energy and 

For the protons of the g a l a c t i c  component t h i s  

F o r . t h e  s o l a r  components, w i t h  an average proton energy 

As  we have learned  from meteor i te  i nves t iga t ions ,  the i n t e n s i t y  of t h e  . 9 -  g a l a c t i c  component has not  changed more than 50% during the last 10 

22 
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Figure 15. An i r o n  p a r t i c l e  has been f i r e d  a t  5 km/sec 
i n t o  qua r t z  g l a s s  i n  t h e  laboratory.  
crater shows a s t r u c t u r e  very s i m i f i h o s e  i n  t h e  
l u n a r  material. (Photo: M a x  Planck I n s t i t u t e  f o r  
Nuclear Physics, Heidelberg). 

The impact 

so t h a t  w e  can consider i t  as a r a d i a t i o n  source which is  p r a c t i c a l l y  constant 

wi th  t i m e .  

a high-energy p a r t i c l e  which s t r i k e s  an atomic nucleus emits a cascade of 

neutrons,  protons,  and n-mesons i n  t h e  forward d i r ec t ion .  I n  t h i s  way t h e  

energy is t r a n s f e r r e d  t o  t h e  nucleus, and i t  becomes hot.  The e x c i t a t i o n  

energy is given off by vaporizing o f f  o t h e r  p a r t i c l e s  such as n,  p o  d, t ,  3He, 

and H e ,  as w e l l  as by s p l i t t i n g  of f  nuc lea r  fragments. The r eac t ion  products 

may b e  many l i g h t  new n u c l e i ,  along w i t h  r e s i d u a l  n u c l e i  w i t h  masses s m a l l e r  

than those  of t h e  s t a r t i n g  p a r t i c l e s .  

The nuc lea r  r eac t ions  produced by i t  can b e  described as follows: 

4 

At a constant r ad ia t ion  i n t e n s i t y ,  one 
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so t h a t  w e  can consider i t  as a r a d i a t i o n  source which is  p r a c t i c a l l y  constant 

wi th  t i m e .  

a high-energy p a r t i c l e  which s t r i k e s  an atomic nucleus emits a cascade of 

neutrons,  protons,  and n-mesons i n  t h e  forward d i r ec t ion .  I n  t h i s  way t h e  

energy is t r a n s f e r r e d  t o  t h e  nucleus, and i t  becomes hot.  The e x c i t a t i o n  

energy is given off by vaporizing o f f  o t h e r  p a r t i c l e s  such as n,  p o  d, t ,  3He, 

and H e ,  as w e l l  as by s p l i t t i n g  of f  nuc lea r  fragments. The r eac t ion  products 

may b e  many l i g h t  new n u c l e i ,  along w i t h  r e s i d u a l  n u c l e i  w i t h  masses s m a l l e r  

than those  of t h e  s t a r t i n g  p a r t i c l e s .  

The nuc lea r  r eac t ions  produced by i t  can b e  described as follows: 

4 

At a constant r ad ia t ion  i n t e n s i t y ,  one 
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Figure 16. Histogram of  the r a d i a t i o n  ages of t h e  

I ' I  

c r y s t a l l i n e  Apollo X I  and X I 1  rocks. Each square 
represents  one stone.  The measured age i n d i c a t e s  
how long the rock w a s  i n  t h e  upper l a y e r  of about 
1 m thickness 1121. (The numbers i n d i c a t e  t h e  
NASA sample numbers.) 

can c a l c u l a t e  the dura t ion  of ac t ion  of t h e  cosmic r a d i a t i o n  from t h e  amount 

of the reac t ion  products and t h e  production rate. 
proved t o  b e  s u i t a b l e  i so topes .  To determine the production rate, one uses 

a r ad ioac t ive  i so tope  such as '%a, which has a h a l f - l i f e  of 2.6 years.  
22 

newly formed is equal t o  t h e  number which decompose. 

rates of various s t a b l e  an4 r ad ioac t ive  i so topes  can b e  measured wi th  high- 

energy acce lera tors .  The r a t i o  of a s t a b l e  t o  a r ad ioac t ive  p a i r ,  considering 

t h e  r e l a t i v e  production rates, is then a d i r e c t  measure of t h e  r a d i a t i o n  t i m e .  

3He, 2he and 38Ar have 

The 
N a  n u c l e i  are i n  r ad ioac t ive  equilibrium. That is ,  t h e  number of those 

The relative production 

- /I91 

A l a r g e  number of r ad ioac t ive  and s t a b l e  s p a l l a t i o n  products were 

measured i n  t h e  Moon rocks: 7Be, "Be, 22Na, 26Al, 3661, 44Ti ,  4 6 S c ,  
* -  
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* 4 S V ,  4 g V y  52 * 
53m , 54Mn, 55Fe, 5 6 C 0 ,  57C0, 59Ni  (radioactive) and 3 H e ,  Mg Y 

2he, 36Ar, .38Ar,  78Kr,  83Kr, 124Xe, I2%e ( s t ab le )  [8, 10, 121. 

t i o n  rate f o r  H e  appears as 10 cm /g p e r  mi l l i on  years.  The r ad ia t ion  ages 

determined i n  t h e  l u n a r  labora tory  are shown i n  Figure 16 f o r  Apollo X I  and 

X I I .  

t h e  luna r  surface.  

and 500 mi l l i on  years ,  During t h i s  t i m e ,  apparently,  rocks from t h e  b a s i c  

s t o n e  have been thrown i r r e g u l a r l y  i n t o  t h i s  region from impacts i n  t h e  

The produc- 
3 -8 3 

The ages i n d i c a t e  how long t h e  rocks have been i n  t h e  upper m e t e r  of 

For t h e  Sea of Tranqui l i ty ,  t he  values are between 20 

/192 neighborhood. In t h e  Sea of Storms, t h e  r ad ia t ion  ages are only h a l f  as - 
grea t .  

covering 200 mi l l i on  years  ago. 

Perhaps t h a t  region w a s  acc iden ta l ly  overwhelmed by a t h i c k  dus t  

The Moon dust can a l s o  b e  dated wi th  the  same methods. On t h e  sur face ,  

of course, t h e  p a r t i c l e s  are enriched by t h e  gases from t h e  s o l a r  wind. These 

are superimposed on t h e  s p a l l a t i o n  products and can only b e  removed by etching. 

The ages found f o r '  t h e  Apollo X I  1unar .dus t  are l ikewise  very high, l y ing  

between 300 and 500 mi l l i on  yea r s  [S ,  131. For a dus t  thickness of several 

meters, one a r r i v e s  at a very s m a l l  turnover rate of only 1 centimeter p e r  

mi l l i on  years.  Thus, t he  f o o t p r i n t s  of t h e  a s t ronau t s  can. still  b e  found by , 

Moon v i s i t o r s  a f t e r  some mil l ions  of years .  

The s o l a r  component a l s o  produces s i m i l a r  nuc lea r  reac t ions .  A s  most 

of  t h e  p a r t i c l e s  have less energy, they p e n e t r a t e  only i n t o  the upper cent i -  

meter l a y e r ,  and correspondingly fewer neutrons are knocked out of t h e  

t a r g e t  nuc le i .  

56C0 and 57C0 i so topes  were found' c lose  under the t a r g e t  nuc le i .  

c l e a r l y  reflect s o l a r  a c t i v i t y .  

P a r t i c u l a r l y  increased activities of 22Na, 26Al,  53M.n, 55Fe, 

These 

A f l a r e  on 19 A p r i l  1969, t h e  i n t e n s i t y  of 

which w a s  followed wi th  satell i tes,  presumably induced t h e  high a c t i v i t y  of 

some shor t - l ived  i so topes  (56C0, 57Co, 54Mn, 55Fe) IlO]. 

. . . . .  . . .  - .  . . . . . . .  . . . . .  
. .  . . . . . . . . . . . . . . .  

* 
Trans l a to r ' s  Note: This ' c o r r e c t l y  should be  52Mne 

, . .  
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Severa l  long-lived ‘isotopes a l s o  have a g r e a t e r  abundance, i n  comparison 

wi th  meteorites.  Thus, i t  appears t h a t  t h e r e  have been s o l a r  f l a r e s  f o r  

mi l l ions  of years.  I n  meteor i tes ,  t h i s  l a y e r  with t h e  reac t ion  products from 

t h e  s o l a r  component has been l o s t  by burning away i n  t h e  Earth’s atmosphere. 

Professors  Wbke and Bergmann and t h e i r  co-workers have contributed a c t i v e l y  

t o  these  problems, as w e l l ‘  as t o  t h e  chemical analyses [ll] . 
Sola r  Wind 

S t i l l  another type of p a r t i c l e  r a d i a t i o n  comes from t h e  Sun, t h e  so-called 

s o l a r  wind. It w a s  p red ic t ed  as e a r l y  as 1951 by Biermann [14] on t h e  b a s i s  

of  comet observations.  Because of t h e  high temperature i n  t h e  s o l a r  corona, 

a plasma escapes s t e a d i l y  i n t o  p lane tary  space a t  about 500 km/sec. 

s t r i k e s  a comet with a plasma t a i l ,  then t h e  tai l .  is def lec ted  r a d i a l l y  away 

from t h e  Sun. The s o l a r  wind can s t r i k e  without hindrance on t h e  Sun-side of 

t h e  l u n a r  su r face ,  as t h e  magnetic f i e l d  of t h e  Moon is extremely weak. I n  

t h e  terrestrial magnetic f i e l d  i t  is def lec ted ,  and flows around t h e  magneto- 

sphere at about 10 Earth r a d i i  d i s tance .  

If it  

/193 

During both luna r  landings,  t h e  s o l a r  wind p a r t i c l e s  have been trapped 

, d i r e c t l y  wi th  a s o l a r  sail ,  and have been analysed i n  t h e  laboratory.  

The measurements were per fomed i n  Switzerland, and were very d i f f i c u l t ,  

as minute amounts of l u n a r  dust  a f f e c t e d . t h e  measurements. Nevertheless, 

they were a b l e  t o  determine a p a r t i c l e  f l ux  f o r  4He of 6.5 * lo6 ‘He/cm sec. 

This agrees w e l l  with. t h e  expected value [15]. 

2 

As already ind ica t ed ,  t h e  Moon samples themselves contain much l a r g e r  

amounts of s o l a r  wind. 

about 1 KeV, and t h e i r  pene t r a t ion  depth i s  some 100 A. Moon dus t ,  agglomer- 

ates, and even t h e  su r faces  of c r y s t a l l i n e  rocks are f u l l y  charged wi th  s o l a r  

wind p a r t i c l e s .  Moon dus t  from Apollo XI, and agglomerates, contained about 

1 cm H2/g, 0.2 cm He/g, 2 0 1 0 : ~  c m  N e ,  4-10 

The mean energy of t h e  protons i n  t h e  s o l a r  wind is 
0 

3 3 ’  3 -4 3 3 cm A r ,  2 0 1 0 ~ ~  cm K r  and 
, 

3 cm Xe p e r  gram. The dust samples from Apollo XI1 contained about - 
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one-third as much s o l a r  wind. It can e a s i l y  be shown t h a t  t hese  gases s t ick 

on t h e  su r faces  of t h e  p a r t i c l e s .  

The gas content i nc reases  with decreasing s i z e  i n  sieve f r a c t i o n s  of 
1 
r dus t  samples, and is  approximately propor t iona l  t o  -, t h e  r a t i o  of su r face  

t o  volume. With successive etchings i t  can a l s o  b e  shown t h a t  t hese  gases 

are enriched i n  t h e  outermost l aye r s  of a few pm thickness. These s t u d i e s ,  

among o the r s ,  were a p r i n c i p a l  objec; of t h e  work of t h e  M a x  Planck I n s t i t u t e  

i n  Mainz [ 8 ]  and Heidelberg 1131. No s o l a r  wind can be  found i n  t h e  i n t e r i o r s  

of t h e  c r y s t a l l i n e  rocks. 

I n  Heidelberg, w e  developed a new type of technique which saves material 

* and is  e spec ia l ly  s u i t e d  f o r  t hese  s tud ie s .  

3 A volume of about 100 1.1 is melted and degassed with a f i n e  e l ec t ron  

beam a few microns i n  diameter i n  a microprobe. 

determined by means of t h e  c h a r a c t e r i s t i c  x-ray spectrum. 

The chemical composition is 

The helium 

' emission is determined simultaneously wi th  a m a s s  spectrometer. By scanning 

t h e . s u r f a c e  of a luna r  sample, one can determine which s i d e  was  turned 

toward t h e  Sun (Figure 1 7 ) .  The helium content can be determined f o r  various 

mineral  types  i n  agglomerates o r  dus t  prepakations. For t h i s  ana lys i s ,  800 

mineral  g ra ins  were se l ec t ed .  Together, they weighed less than one milligram: 

The r e s u l t s  are extremely i n t e r e s t i n g ,  and g ive  some i nd ica t ion  of t h e  h i s t o r y  

of the luna r  dust. 

Through annealing t h e  dus t  granules a t  t h e  l u n a r  sur face ,  where tempera- 

t u r e  d i f f e rences  from -150' t o  +120° C p r e v a i l  i n  the outs ide  l a y e r s ,  t he  

noble gases are p a r t l y  Lost, o r  they d i f f u s e  i n t o  t h e  i n t e r i o r  of t h e  mineral 

* gra ins .  Helium d i f f u s e s  more e a s i l y  than neon and argon. From t h e  d i f f e r i n g  /194 
penet ra t ion  depths of t hese  gases (4.4 1.1; 2.1 p; 'and 1.4 p f o r  He, N e  and Ar) 

w e  can c a l c u l a t e  t h a t  t h e  d u s t  g ra ins  were exposed to t h e  s o l a r  wind for an 

average of 10,000 years ,  
, 

I > 
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traces of t h e  
e l e c t r o n  beams 

2 3mm . 

Figure 17 .  A Moon rock is  scanned wi th  an e l ec t ron  
beam. The l e f t  rock has one su r face  charged wi th  
t h e  s o l a r  wind, and one f r e s h  f r a c t u r e  surface.  
The s o l a r  wind helium can be demonstrated only on 
t h e  o r i g i n a l  su r f ace  (below). Right: t h e  rock 
i s  cut  perpendicularly t o  the su r face  and embedded. 
When t h e  e l e c t r o n  beam is  passed through s t e a d i l y ,  
only t h e  t h i n  su r face  l a y e r  gives o f f  helium. 

The annealing a l s o  explains why more H e  is present  i n  t h e  t i tanium-rich 

minerals,  i n  i lmen i t e  and i lmenite-rich agglomerates, than i n  g l a s s ,  pyroxene 

and p lag ioc lase .  

e a s i l y  

The noble  gas d i f f u s e s  out of t h e  l a t te r  'k inera ls  more 

Thus, w e  cannot expect t h e  gases i n  t h e  l u n a r  samples t o  record t h e  

co r rec t  composition of t h e  s o l a r  corona. 

l o s t  p r e f e r e n t i a l l y .  The tisotope abundances show i n t e r e s t i n g  devia t ions  

from t h e  noble gases i n  t h e  atmosphere. 

Presumably t h e  l i g h t e r  gases are 

3 I n  helium, 3He is present  i n  t h e  proportion 4He/ H e  a 2,800. The 20Ne/ 

The i so topes  2 2 N e  r a t i o  is 13, much la rge$  rthan t h e  atmospheric value of 9.5.  

134Xe and I3%e are somewhat more abundant i n  atmospheric Xe than i n  t h e  

28 

. 



3 

h 

W e  have previously encountered noble gases wi th  such compositions and 

wi th  p r a c t i c a l l y  exac t ly  t h e  same i s o t o p i c  abundances i n  about 10 extra- 

terrestrial meteorites.  

'We must assume t h a t  the gas-rich meteor i tes  have a l s o  been i r r a d i a t e d  

by the s o l a r  wind i n  a similar way. 

and it has been confirmed by the analyses of t h e  Moon samples. 

f u t u r e  we can i n v e s t i g a t e  the  s o l a r  wind jus t  as well i n  gas-rich meteor i tes ,  

and use t h e  va luable  luna r  material f o r  o the r  problems. 

WAnke 1161 proposed this  hypothesis,  

I n  the 

The most i n t e r e s t i n g  r e s u l t  from t h e  s t u d i e s  of  t h e  luna r  samples w a s  

t h e  g rea t  age. Even t h e  f i r s t  p rov i s iona l  noble gas analyses i n  t h e  l u n a r  

labora tory  i n  Houston, which were performed by 0. A. Schaeffer, J. Funkhouser, 

D. Bogard and t h e  author,  revealed t h i s  s u r p r i v d K - A r - a g e s  are shown 

f o r  both missions i n  Figure 18, as histograms. The va lues  f o r  Apollo X I  

s c a t t e r  around 3.6, and f o r  Apollo X I 1  - around 2.5 b i l l i o n  years.  

low values can be explained by gas l o s s e s  due t o  t h e  high s u r f a c e  temperature 

on t h e  Moon. Turner [17] has determined these  gas l o s s e s  wi th  an ingenious 

method. 

years .  The s t a r t i n g , t i m e  of t h i s  r ad ioac t ive  clock is  t h e  latest complete 

degassing ( fus ion  of t h e  magma), and t h e  t i m e  measurement begins on cooling 

off at about 200° C i f  t h e  rock holds  the radiogenic 40Ar in t h e  crystal 

The 

The cor rec ted  ages f o r  t h e  Sea of T ranqu i l i t y  were 3.6 b i l l i o n  

0 29 

s o l a r  wind, probably because of Xe from the spontaneous f i s s i o n  of terres- 

t r i a l  uranium. 

s i d e r a t i o n s  of nuc lear  systematics.  Much l a r g e r  values are found i n  t h e  

s o l a r  wind: 1.0 f o r  Apollo X I  and 0.5 f o r  Apollo X I I .  The clear d i f f e rence  /195 

i n  the two dus t  samples already i n d i c a t e s  t h a t  t h e  40Ar is derived from a ~ 

source o the r  than t h e  s o l a r  wind. It w a s  proposed that t h e  degassing of t h e '  

lunar material produced- a t r a n s i e n t  t h i n  atmosphere of radiogenic 40Ar, which 

w a s  included secondarily i n  t h e  l u n a r  su r face  due t o  electromagnetic i n t e r -  

ac t ion  w i t h  t h e  s o l a r  wind. 

36 The 40Ar/ A r  should b e  smaller than 0.01 according t o  con- 

The Age of t h e  Moon and of t h e  Moon Rocks 
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Figure 18. Histogram of the K-Ar ages of t h e  c r y s t a l l i n e  
rocks from Apollo X I  and XII. 
t h e  NASA sample numbers 1121.1 

("he numbers i n d i c a t e  

lat t ice.  Since then, the K-Ar r e s u l t s  f o r  t h e  Apollo X I  samples have been 

confirmed by extremely p r e c i s e  i so tope  analyses w i t h  a l l  t h e  known dat ing  

methods. Confirmation f o r  Apollo X I 1  i s  s t i l l  outstanding. According t o  

t h e  latest r epor t s ,  i nd iv idua l  Apollo X I 1  rocks have ages up t o  4.5 b i l l i o n  

years .  The r e s u l t s  are summarized i n  Table 2. 

The Rb-Sr and U-Pb methods d a t e  t h e  c r y s t a l l i z a t i o n  from t h e  magma. 

From mineral  f r a c t i o n s  wi th  d i f f e r e n t  r a t i o s  of mother and daughter substances,  

one obta ins  t h e  radiogenic po r t ion  i n  t h e  components with a higher concentra- 

t i o n  of mother substance. 

0 - - - .__ 

- 1 - r - --- 



TABLE 2. TABULATION' OF AGES ACCORDING TO 
DIFFERENT DATING METHODS. 

AGES OF LUNAR SAMPLES I N  BILLIONS OF YEARS, APOLLO X I  

Crys t a l l i ne  rocks 
Dust 
Agglomerates --- 1 

Apollo X I I :  K-Ar age 1.8-2.7 b i l l i o n  years  E l ] .  

The Rb-Sr measurements were very d i f f i c u l t ,  because the  Rb content i n  

t h e  lunar  material 'is extremely small. The 'd i f fe rences  i n  t h e  87Sr abundances 

are only some 1%. Wasserburg and co-workers w e r e  t he  only ones able t o  

measure t h i s  d i f fe rence  with s u f f i c i e n t  prec is ion ,  using an "on-line" con- 

t r o l l e d  mass spectrometer technique [ 181. 

The uranium content i n  the  lunar  s amples  is r e l a t i v e l y  l a r g e g  and t h e  

primary lead ,  being a v o l a t i l e  elemeni, is  depleted,  so t h a t  90% of t h e  lead  

content i s  of radiogenic or ig in .  Thus', t h e  composition of t h e  pr imordial  

l e a d  plays a subordinate r o l e p  and t h e  TJ-Pb measurements l ikewise provide 

r e l i a b l e  c r y s t a l l i z a t i o n  ages [ 19 3 .  

Both methods y i e l d  3.7 b i l l i o n  yea r s  f o r  the rocks from t h e  Sea of 

Tranqui l i ty  which have been measured to  date.  'One exception is  t h e  rock 

(10057) t h a t  gives a U-Pb age of 4.1 b i l l i o n  years ,  b u t  a Rb-Sr age of 3.7 
b i l l i o n  years.  I n  comparison, t h e  o ldes t  terrestrial rocks are only 3.5 
b i l l i o n  'years old. 

The measurements on ind iv idua l  components of t h e  lunar  dust are i n t e r e s t -  

ing. 

can be explained by gas losses ,  

b i l l i o n  years ,  

The K-Ar ages l i e  between 1.6 and 4.5 b i l l i o n  years.  The lower values 

The Rb-Sr ages are between 4.1 and 4.5 
Components with ,such g rea t  ages can apparently n o t  be derived 

- 

31 



from t h e  Apollo X I  rocks themselves, Rather, t h e  main portions of the  dus t  

must have been t ranspor ted  i n t o  t h e  Sea of Tranqui l i ty  

s t i l l  o lder  rocks. 

south of t h e  landing s i te  may be such a source. 

t h a t  t h e  chemical composition of t he  dus t  does not dev ia t e  more from t h a t  of 

from regions with 

It is  conjectured t h a t  t h e  mountains t o  t h e  w e s t  and 

It is remarkable, c e r t a i n l y ,  

t h e  rock. One of t h e  Apollo XI11 ob jec t ives  should b e  t o  b r i n g  back such . 
samples from t h e  highlands. - I19 7 

The provis iona l  r e s u l t s  f o r  t h e  rocks from t h e  Sea of Storms are a l s o  

p l o t t e d  i n  Figure 18. 

remains t o  b e  seen whether o the r  methods will confirm these ages. 

l a r g e  meltings occurred at  such a la te  period, i t  w i l l  be necessary t o  

formulate new ideas  f o r  t h e  energy source i n ’ a l l  hypotheses f o r  t h e  o r i g i n  of 

t h e  Moon. 

Thei r  ages are less by about 1 b i l l i o n  years ,  bu t  i t  

I n  case 

As wi th  t h e  Earth,  t h e  t r u e  o r i g i n  of t h e  Moon as an independent body 

can b e  dated-$only from t h e  Pb isotopes.  The so-called Pb-Pb-age y i e l d s  the  

t i m e  s i n c e  t h e  Pb w a s  i n  combination wi th  t h e  uranium on t h e  luna r  sur face .  

This i s  the re fo re  i d e n t i c a l  with t h e  formation of the uranium-rich lunar  

crust o r  wi th  t h e  o r i g i n  of t he  Moon i t s e l f .  

l y  blended average sample of t h e  l u n a r  sur face .  

The dus t  is a s u i t a b l e ,  thorough- 

Its Pb-Pb-age is 4.66 b i l l i o n  /198 

years.  

of t h e  Earth 1191. 

This agrees w i t h  t h e  ages of t h e  meteor i tes  and with t h e  Pb-Pb-age 

From the Rb/Sr r a t i o s  of t h e  Earth and the,Moon, and from the  primary 

S r  r a t i o  i n  the l u n a r  dus t ,  w e  can estimate t h a t  t h e  luna r  material 87 86 
Sr /  

w a s  no t  mixed with terrestrial material f o r  more than 200 mi l l i on  years.  

O thendse ,  t h e  l u n a r  s t ront ium would have had a g r e a t e r  proportion of 

radiogenic 87Sr. . The Mooni, Earth, and even t h e  meteor i tes  apparently a l l  

formed a t  about t h e  same t i m e .  
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Lunar Hypotheses / 

It is  n o t  expected t h a t  t h e  new r e s u l t s  w i l l  immediately answer t h e  

ques t ion  of t h e  o r i g i n  of t h e  Moon s a t i s f a c t o r i l y ,  o r  allow e x i s t i n g  hypo- 

theses  t o  b e  excluded wi th  ce r t a in ty .  But w e  can take up t h e  problem anew 

wi th  be t t e r -d i r ec t ed  questions , and attempt t o  revise t h e  o l d  concepts. 

The t i d e  theory,  according t o  which t h e  Moon w a s  t o rn  o u t  of t h e  more 

o r  less s o l i d  Earth c r u s t ,  is no t  tenable  i n  a simple form. The sepa ra t ion  

m u s t  already have taken p lace  4.4 b i l l i o n  years ago. 6'Keefe suggests a 

f i s s i o n  process by which both p a r t s  proceeded on similar pa ths  and la te r  

co-rotated. The Moon w a s  s t rongly  heated on t h e  su r face  by s t r o n g  t i d a l  

forces ,  so t h a t  t h e  e a s i l y  v o l a t i l e  components vaporized away. Chemical 

d i f f e r e n t i a t i o n  is supposed t o  have occurred i n  this phase. 

Urey's concept, by which t h e  Modn r e s u l t e d  from many captured meteorite- 

l i k e  bodies,  cannot expla in  the chemical composition and t h e  dens i ty  of t h e  

Moon. 

The o r i g i n  of the Moon, t oge the r  w i t h  t h e  Earth as a double p l ane t ,  is 

receiving somewhat more a t t e n t i o n  i n  more recent  discussions.  

s t a g e  of our s o l a r  system, a Sa tum- l ike  r i n g  moved around t h e  Earth. 

this time t h e  Sun went through t h e  phase of deuterium burning and heated the 

r i n g  s o  s t rong ly  that t h e  r ead i ly  v o l a t i l e  elements escaped s e l e c t i v e l y .  

model attempts t o  expla in  t h e  d i f f e rence  i n  t h e  d e n s i t i e s  of the Moon and 

Earth, and also the f r a c t i o n a t i o n  of  the v o l a t i l e  elements between t h e  Moon 

and the  Earth. 

I n  t h e  i n i t i a l  

A t  

This 
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